Breadcrumbs Section. Click here to navigate to respective pages.

Chapter

Chapter

# Topological and Metric Spaces

DOI link for Topological and Metric Spaces

Topological and Metric Spaces book

# Topological and Metric Spaces

DOI link for Topological and Metric Spaces

Topological and Metric Spaces book

## ABSTRACT

When introducing the concept of topology, one faces the common problem of the choice of a particular path

of reasoning, or equivalently, the particular deﬁnition of topology. Mathematics is full of such logical or

rather didactic problems. When two statements describing properties of the same object are equivalent to

each other, then one can be selected as a deﬁnition, whereas the other can be deduced as a consequence.

For instance, we may call upon the equivalence of the Axiom of Choice and the Kuratowski-Zorn Lemma

discussed in Chapter 1. The two statements are equivalent to each other and, indeed, it is a matter of a purely

arbitrary choice that the Axiom of Choice bears the name of an axiom while the Kuratowski-Zorn Lemma

serves as a theorem. One of course may argue that it is easier to accept intuitively the Axiom rather than the

Lemma, but such reasoning has very little to do with (formal) logic, of course.